EcoMUVE: Promoting Ecosystems Science Learning via Multi-User Virtual Environments

Chris Dede, PI
Tina Grotzer, co-PI
Shari Metcalf, Project Director
Amy Kamarainen, Post-doctoral Fellow
MUVE: Multi-User Virtual Environment

• Immersive simulated world
• Virtual representation called an avatar
• Move through virtual environment
• Interact with digital objects and tools
• Interact with other users and with computer-based agents
Rationale

- Ecosystems have complex causal dynamics that are hard for students to understand.
- We have seen that Multi-User Virtual Environments (MUVEs) can help students engage in authentic science inquiry and gain a deeper understanding through immersion in virtual worlds.
- Our goal is to develop EcoMUVE as a MUVE-based curriculum that will enable a richer understanding of ecosystems and complex causality.
EcoMUVE project specifics

• Research project funded by the Institute of Education Sciences, U.S. Department of Education.
• Timeline: July, 2008 - July 2011 (extended to June 2012)
• Targets middle school science (ages 11-14).
• Two MUVE-based modules: Pond and Forest
• Each module is a two-week unit to teach about ecosystems and complex causal patterns, using an inquiry-based approach.
EcoMUVE Demo
Why MUVEs for Science Education?

- Increased engagement in learning.
- Simulated experiences otherwise impossible in school settings.
- Exploration over time, place, size, and scale – supports for accessing and visualizing complex phenomena.
- Opportunities to take on roles, work in teams, jigsaw pedagogy – problem-based, open-ended environment.

MUVEs create a shared immersive experience that contextualizes learning and supports inquiry.
Immersion engagement, and learning

- Species scavenger hunt – opportunities for self-directed exploration, discovery.
- Links to food web.
Food Web tool
Effects at a distance and over time

Effects in ecosystems are often at a distance and over a long period of time. Students discover that fertilizer runoff from a distant development causes the eventual eutrophication of a local pond.
Non-obvious causes
A submarine tool explores the microscopic organisms in the pond, helping students understand that organisms that they cannot see play a critical role in the pond ecosystem.
Module 2: Forest
Recent research

- Over 20 teachers and 1200 students used EcoMUVE during Spring, 2011.
- Each classroom used either Pond, Forest, or both modules.
- Broad range of classrooms: 4th/5th – 9th grade, diverse populations of students.
- Many teachers participated in a comparison study of the Pond module and a similar non-MUVE curriculum.
- We collected lots of data…
Goals for Fall 2011

• Data collected last year includes pre-post surveys, student artifacts, video, interviews, and logfiles.

• We have funding this year to:
 – score, enter, and analyze the data
 – finalize the curriculum materials
 – and possibly run further classroom implementations
Research projects – do you have background or skills in:

- Assessment, statistical methods
- Ecology and ecosystem science
- Middle school science teaching
- Curriculum development
- Flash or other web programming
- Gaming and virtual environments
- Graphic design
EcoMUVE project tasks

1. Help with scoring and analysis of both qualitative and quantitative assessment data, including:
 a. Pre-post surveys
 b. Student interviews
 c. Teacher interviews
 d. Student artifacts
 e. Logfiles
 f. Videos
<table>
<thead>
<tr>
<th>id</th>
<th>data</th>
<th>objectId</th>
<th>time</th>
<th>type</th>
<th>userId</th>
<th>worldId</th>
<th>timePeriod</th>
</tr>
</thead>
<tbody>
<tr>
<td>41831</td>
<td>9.4,mg/L</td>
<td>pond</td>
<td>2010-05-27 11:06:46</td>
<td>oxygen</td>
<td>367</td>
<td>default</td>
<td>ecmuva_july10_day</td>
</tr>
<tr>
<td>41832</td>
<td>7.6,</td>
<td>pond</td>
<td>2010-05-27 11:06:47</td>
<td>ph</td>
<td>366</td>
<td>default</td>
<td>ecmuva_july28</td>
</tr>
<tr>
<td>41833</td>
<td>NULL</td>
<td>NULL</td>
<td>2010-05-27 11:06:48</td>
<td>timePeriodChange</td>
<td>378</td>
<td>default</td>
<td>ecmuva_july22</td>
</tr>
<tr>
<td>41834</td>
<td>2, great blue heron</td>
<td>NULL</td>
<td>2010-05-27 11:06:49</td>
<td>population</td>
<td>362</td>
<td>default</td>
<td>ecmuva_july6</td>
</tr>
<tr>
<td>41835</td>
<td>15,NTU</td>
<td>pond</td>
<td>2010-05-27 11:06:51</td>
<td>turbidity</td>
<td>366</td>
<td>default</td>
<td>ecmuva_july28</td>
</tr>
<tr>
<td>41836</td>
<td>ok</td>
<td>NULL</td>
<td>2010-05-27 11:06:52</td>
<td>textChat</td>
<td>363</td>
<td>default</td>
<td>ecmuva_july6</td>
</tr>
</tbody>
</table>
EcoMUVE project tasks

2. Final editing of project materials, including:
 a. Project website
 b. Curriculum materials
 c. Teacher training materials
 d. Assessments
 e. Flash-based tools (food web, learning quests)
 f. On-line surveys
EcoMUVE project tasks

3. Working with schools and collecting additional classroom data is also a possibility this fall.
 – Useful to have flexible daytime schedule for classroom visits, videography or interview background, teaching experience.