There are 8 problems in all.

In problem set 2 we developed a lot of probability theory using purely Hilbert space methods, i.e. no measure theory. Now that we have studied measure theory, we can go back and combine Hilbert space and measure theoretic methods to get some powerful results.

One key idea is the notion of conditional expectation. In Kolmogorov’s formulation of the general form of this concept (see below), the existence of a conditional expectation is an immediate consequence of the Radon-Nikodym theorem. We showed in problem set 2 that for $L_2$ random variables, conditional expectation is just orthogonal projection. So one of the things we will do here is redo the $L_2$ version so as to give us an alternative proof of the existence of conditional expectation. Of course I have to define the terms.

Once we have the notion of conditional expectation, it is easy to define a “martingale”, in such a way that it generalizes the notion of an $L_2$ martingale as defined in the first problem in problem set 2. The proof of the $L_2$ martingale convergence theorem as given in that problem, was quite transparent. The proof of a more general martingale convergence theorem is a bit harder.

Associated with the concept of a martingale is the notion of a stopping time. Roughly speaking, a stopping time is an “exit strategy” to use current political terminology - it is a decision in advance as to when to quit playing the game represented by the martingale. Doob’s stopping time theorem says that under certain hypotheses, a stopping time can not help. You can not do better (on average) by playing with an exit strategy that by not playing at all. The issues involved in the proof of this theorem are precisely some of the issues we have been discussing in class - when is the limit of an integral equal to the integral of a limit? That some condition is necessary was recognized by Bernoulli in his St. Petersburg paradox.

I will start with a pretty application of Doob’s stopping time theorem. So I am not writing in logical order. You might want to skim through the whole problem set before beginning the problems.
1 Expected time until a pattern.

This is a problem of some theological importance. It is often said that if a “billion” monkeys sit in front of a typewriter each typing a letter at random once a second, “eventually” one will type out the text of Shakespeare’s Julius Caeser. The question is - how long should we expect to wait until this happens?

1.1 The geometric distribution.

As a warm up question, one might ask the following: Suppose an experiment is repeated indefinitely and independently, and there are two possible outcomes: “A” with probability $q$ and “B” with probability $p = 1 - q$.

1. What is the probability that B will occur for the first time on the $k$-th trial, where $k = 1, 2, \ldots$? What is $E(k)$, the expected time until the first $B$ appears? What is the variance?

1.2 The pattern matters.

When we ask how long should we expect to wait until a given pattern appears, the answer is more tricky. For instance, suppose that $p = q = \frac{1}{2}$, in the previous example.

What is the expected waiting time until the pattern AAAAAA appears? Answer: 126.
What is the expected waiting time until the pattern AABBA appears? Answer: 70.

So we have to wait a shorter time for AABBA on average than for AAAAAA even though the probability of the actual occurrence of these sequences in six consecutive trials is the same. For a purely combinatorial (but complicated) explanation of this computation, see Feller *Introduction to Probability Theory and its Applications, I* page 304. For a more conceptual version of this computation using “stopping times”, look ahead. Indeed, I want to show (following Ross *Stochastic Processes, 2nd ed.* page 301) how this kind of problem can be solved in a very elementary and conceptual way using Doob’s “Martingale stopping theorem”. I will try to give an intuitive statement of the conclusion of this theorem. I will defer the statement of the hypotheses.

First some notation and some necessary results:

## 2 Conditional expectation and martingales.

### 2.1 Probability measures, probability triples.

Let $\Omega$ be a set and $\mathcal{F}$ be a $\sigma$-field of subsets of $\Omega$ and $\mu$ a measure on $\mathcal{F}$. Recall that we say that $\mu$ is a **probability measure** if $\mu(\Omega) = 1$. We will usually write $P$ instead of $\mu$ for a probability measure. For example, we could take $\Omega = [0, 1]$, $\mathcal{F}$ to consist of the Lebesgue measurable sets, and $P$ to be Lebesgue measure.

In what follows, it will frequently be the case that $\Omega$ and $P$ are fixed, but we will be varying $\mathcal{F}$. So we will call $(\Omega, \mathcal{F}, P)$ a **probability triple**, or simply a triple for short.

### 2.2 Conditional expectation.

Let $(\Omega, \mathcal{F}, P)$ be a probability triple. A real valued function on $\Omega$ which is measurable (relative to the Borel sets on $\mathbb{R}$) is called a (real valued) random variable. If $X \in L_1(\Omega, \mathcal{F}, P)$ then its expectation, denoted by $E(X)$ is just another way of writing its integral. i.e.

$$E(X) := \int_{\Omega} X \, dP.$$  

Let $X \in L_1(\Omega, \mathcal{F}, P)$ and $\mathcal{G}$ be a sub $\sigma$-field of $\mathcal{F}$.

**Theorem 1 [ Kolmogorov.]** There exists a random variable $Y$ such that

- $Y$ is $\mathcal{G}$ measurable,
- $Y \in L_1(\Omega, \mathcal{G}, P)$ and
- $$\int_G X \, dP = \int_G Y \, dP \quad \forall G \in \mathcal{G}.$$
Furthermore, if $Z$ is another random variable with these properties, then $Z = Y$ almost everywhere.

Proof of uniqueness. We are assuming that $\int_G (Y - Z) dP = 0$ for all $G \in \mathcal{G}$. If it is not true that $Y = Z$ a.e., then either the set where $Y - Z > 0$ or the set where $Z - Y > 0$ has positive measure. Without loss of generality, we may assume that the set $A$ where $Y - Z > 0$ has positive measure. The set where $Y - Z > 1/n$ belongs to $\mathcal{G}$, call it $A_n$. We have $A_n \uparrow A$ so we must have $P(A_n) > 0$ for some $n$. But then

$$\int_{A_n} (Y - Z) dP > \frac{1}{n} P(A_n) > 0$$

contradicting our assumption.

Proof of the existence using Radon-Nikodym. Write $X = X^+ - X^-$. If we can find $Y^+$ and $Y^-$ that work we can choose $Y = Y^+ - Y^-$. So it is enough to establish the existence of $Y$ when $X$ is non-negative. Define the function on elements of $\mathcal{G}$ by

$$G \mapsto \int_G X dP.$$

It is immediate that this is a measure which is absolutely continuous relative to the measure $P$ restricted to $\mathcal{G}$. Radon-Nikodym then guarantees the existence of a non-negative $Y \in L_1(\Omega, \mathcal{G}, P)$ such that

$$\int_G X dP = \int_G Y dP \quad \forall \ G \in \mathcal{G}. \quad \square$$

The random variable $Y$ given by Kolmogorov’s theorem will be denoted by

$$E(X|\mathcal{G})$$

so if $\mathcal{G}$ is the sub-$\sigma$ field consisting of only the sets $\emptyset$ and $\Omega$ then $E(X|\mathcal{G})$ assigns 0 to $\emptyset$ and $E(X)$ to $\Omega$.

Proof of the existence using projections in Hilbert space and the monotone convergence theorem. Here is an alternative proof using what we know about $L_2$:

- **Proof when** $X \in L_2$. We know that $L_2(\Omega, \mathcal{G}, P)$ is complete, hence it is a closed subspace of $L_2(\Omega, \mathcal{F}, P)$. Let $\pi$ denote orthogonal projection of $L_2(\Omega, \mathcal{F}, P)$ onto $L_2(\Omega, \mathcal{G}, P)$. Set

$$Y = \pi(X).$$

By the definition of $L_2(\Omega, \mathcal{G}, P)$, we know that $Y$ is $\mathcal{G}$ measurable, and since $P(\Omega) = 1 < \infty$, we know that $L_2(\Omega, \mathcal{G}, P) \subset L_1(\Omega, \mathcal{G}, P)$, so $Y \in L_1(\Omega, \mathcal{G}, P)$. Therefore, $Y$ is $\mathcal{G}$ measurable and

$$\int_G Y dP = \int_G X dP \quad \forall \ G \in \mathcal{G}.$$
$L_1(\Omega, \mathcal{G}, P)$. We must verify that $\int_G XdP = \int_G YdP \forall G \in \mathcal{G}$. Since $1_G \in L_2(\Omega, \mathcal{G}, P)$ and $X - Y$ is orthogonal to $L_2(\Omega, \mathcal{G}, P)$ we know that

$$(X - Y, 1_G) = 0$$

or

$$\int_G XdP = (X, 1_G) = (Y, 1_G) = \int_G YdP$$

as required. So we have again verified that that for $X \in L_2$ conditional expectation is exactly orthogonal projection. We now want to extend this result from $L_2$ to $L_1$. For this we first prove:

- **If $U$ is a non negative bounded random variable (and so an element of $L_2$) then $W = E(U|\mathcal{G})$ is non-negative almost everywhere.**

**Proof:** If not, there is some integer $n > 0$ such that $G \in \mathcal{G}$ has $P(G) > 0$ where

$$G := \{x|W(x) \leq -\frac{1}{n}\}.$$

But then

$$0 \leq \int_G UdP = \int_G WdP \leq -\frac{1}{n}P(G) < 0,$$

a contradiction.

- **Proof of the existence of conditional expectation for $X \in L_1$.** By splitting $X$ into it positive and negative parts, we may assume that $X$ is non-negative. Choose bounded non-negative random variables $X_n$ with $X_n \nearrow X$. Let $Y_n = E(X_n|\mathcal{G})$ which we know exist and are non-negative and are increasing almost everywhere. Define $Y$ by

$$Y(\omega) = \lim Y_n(\omega).$$

Then $Y_n \nearrow Y$ is $\mathcal{G}$ measurable, belongs to $L_1(\Omega, \mathcal{G}, P)$ and $\int_G XdP = \int_G YdP \forall G \in \mathcal{G}$ all by the monotone convergence theorem applied to $L_1(\Omega, \mathcal{G}, P)$ and to $L_1(\Omega, \mathcal{F}, P)$. \(\square\)

2. Take $\Omega = [0, 1], \mathcal{F}$ the Lebesgue measurable sets, and $P$ to be Lebesgue measure. For a fixed $n$, let

$$G_0 := [0, \frac{1}{2^n}], \text{ and } G_k = (\frac{k}{2^n}, \frac{k+1}{2^n}] \text{ for } 1 \leq k < 2^n.$$

Let $\mathcal{G}_n$ be the $\sigma$-field generated by these sets, so $\mathcal{G}_n$ contains $2^n$ elements. Let $X$ be the random variable $X(x) = x \forall x \in [0, 1]$. What is $E(X|\mathcal{G}_n)$?

Of course, in this problem, there is nothing special about the particular random variable that we chose.
2.3 Some useful properties of conditional expectation.

1. The map $X \mapsto E(X|\mathcal{G})$ is linear. This is immediate from the defining properties.

2. If $\mathcal{H} \subset \mathcal{G}$ then

$$E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{H}).$$

This follows from the projection definition for $X \in L^2$ and then from the limiting definition for general $X \in L^1$.

3. If we take $\mathcal{H}$ to consist of just $\emptyset$ and $\Omega$, then $E(X|\mathcal{H})$ assigns 0 to $\emptyset$ and $E(X)$ to $\Omega$ as we have seen. So a special but very useful case of the preceding item is

$$E(E(X|\mathcal{G})) = E(X).$$

In words, this says that the expectation of the conditional expectation is the expectation.

4. If $Z$ is bounded and $\mathcal{G}$ measurable, then

$$E(ZX|\mathcal{G}) = ZE(X|\mathcal{G})a.e.$$}

Indeed, we need only prove this for non-negative $X$ as usual. Both sides are $\mathcal{G}$ measurable. If $Z = 1_A$ for $A \in \mathcal{G}$ then for any $B \in \mathcal{G}$ we have

$$\int_B 1_A X dP = \int_{A \cap B} X dP = \int_{A \cap B} E(X|\mathcal{G}) dP$$

by the definition of conditional expectation. But

$$\int_{A \cap B} E(X|\mathcal{G}) dP = \int_B 1_A E(X|\mathcal{G}) dP$$

for all $B \in \mathcal{B}$. So the equation (3) is true by the uniqueness of conditional expectation for $Z = 1_A, \ A \in \mathcal{G}$. Then it is true for non-negative simple functions by linearity, and then true for all non-negative $X$ by monotone convergence.

5. If $X$ is independent of $\mathcal{G}$ then

$$E(X|\mathcal{G}) = E(X).$$

Recall that to say that $X$ is independent of $\mathcal{G}$ means that for any $A \in \sigma(X)$, the $\sigma$-field determined by $X$, and any $B \in \mathcal{G}$ we have

$$P(A \cap B) = P(A) \cdot P(B).$$

For any such $A$ we have

$$\int_B 1_A dP = P(A \cap B) = P(A) \cdot P(B) = \int_B P(A) dP$$
and the constant function $P(A)$ is measurable for any $\sigma$-field. So $E(Z|\mathcal{G}) = E(Z)$ for simple functions which are measurable relative to $\sigma(X)$ and hence for all integrable functions which are measurable relative to $\sigma(X)$ in particular for $X$.

Let us go back to Problem 2. If $X$ is now any element of $L_1([0,1])$ we can think of $E(X|\mathcal{G}_n)$ as giving more and more detailed information about $X$ as $n$ increases. This is not a purely theoretical example. In fact the sequence of $\sigma$-fields in Problem 2 are closely related to what are known as Haar wavelets.

If $Z$ is a random variable belonging to $L_2$, we can form $E(Z^2|\mathcal{G})$ and so define the random variable

$$\text{Var}(Z|\mathcal{G}) := E(Z^2|\mathcal{G}) - E(Z|\mathcal{G})^2$$

and assuming that we can apply item 4, above, to $E(Z|\mathcal{G})$ this equals

$$E\left((Z - E(Z|\mathcal{G}))^2|\mathcal{G}\right).$$

3. Under the above hypotheses show that

$$\text{Var}(Z) = E(\text{Var}(Z|\mathcal{G})) + \text{Var}(E(Z|\mathcal{G})).$$

[HInt: Use (3).

In words, (4) says that the variance equals the expectation of the conditional variance plus the variance of the conditional expectation.

2.4 Computing with conditional probability.

Frequently the $\sigma$ field $\mathcal{G}$ is the one determined by a random variable $W$. That is, $\mathcal{G}$ is the inverse image under $W$ of the Borel sets (together with the sets of $P$ measure zero). Under these circumstances, it is usual to write

$$E(Z|W)$$

instead of $E(Z|\mathcal{G})$. Equations (2) and (4) now read as

$$E(X) = E(E(X|W))$$

and

$$\text{Var}(X) = E(\text{Var}(X|W)) + \text{Var}(E(X|W)).$$

For example, if $W$ is integer valued, then $\mathcal{G}$ consists of functions which are (equal a.e. to functions which are) constant on the sets $W^{-1}(n)$. 

7
2.4.1 Compound random variables.

Let $X_1, X_2, X_3, \cdots$ be independent identically distributed random variables each with mean $\mu$ and variance $\sigma^2$. $N$ is a random variable with values in the natural numbers $\mathbb{N}$ which is independent of all the $X_i$. We want to compute the mean and variance of the random variable

$$S := \sum_{i=1}^{N} X_i,$$

a “random sum of random variables”, or, more succinctly, a “compound random variable”. Now $E(S|N)$ takes on the value $E \left( \sum_{i=1}^{N} X_i \right)$ on $N^{-1}(n)$. Since the $X_i$ and $N$ are assumed to be independent, this equals $E(\sum_{i=1}^{n} X_i) = nE(X_i) = n\mu$ by the assumed independence of the $X_i$. So now taking the expectation of the random variable $\mu N$ we see that

$$E(S) = \mu \cdot E(N).$$

4. Show that

$$\text{Var}(S) = \sigma^2 E(N) + \mu^2 \text{Var}(N).$$

For example, if $N$ is Poisson distributed so $E(N) = \text{Var}(N) = \lambda$ then

$$\text{Var}(S) = \lambda(\sigma^2 + \mu^2) = \lambda E(X^2).$$

2.4.2 The geometric distribution via conditional expectation.

Here we show how to do Problem 1. using conditional expectation: We have independent trials each resulting in success with probability $p$ are repeated until the first success. Let $N$ be the number of trials until the first success. We want $E(N)$ and $\text{Var}(N)$. We condition on $Y$, the first trial. We have

$$E(N|Y = 1) = 1, \quad E(N|Y = 0) = E(N) + 1$$

since if $Y = 1$ then we have success at the first trial, and if $Y = 0$ we have to start all over. So

$$E \left( E(N|Y) \right) = p + (1 - p)(E(N) + 1) = 1 + E(N) - pE(N)$$

so from

$$E(N) = E \left( E(N|Y) \right)$$

we get

$$E(N) = \frac{1}{p}$$

and hence

$$E(N|Y = 1) = 1, \quad E(N|Y = 0) = 1 + \frac{1}{p}.$$
The variance of $E(N|Y)$ is

$$p + (1 - p)\left(1 + \frac{1}{p}\right)^2 - \frac{1}{p^2} = p + 1 + \frac{1}{p} - p - 1 = \frac{1}{p} - 1.$$ 

Now to compute $\text{Var}(N|Y)$ we first compute $E(N^2|Y)$. We have

$$E(N^2|Y = 1) = 1, \quad E(N^2|Y = 0) = E((1 + N)^2),$$

so

$$E(N^2) = E(E(N^2|Y)) = p + (1 - p)(1 + 2E(N) + E(N^2))$$

hence

$$E(N^2) = \frac{2 - p}{p^2}$$

and so

$$E(N^2|Y = 1) = 1, \quad E(N^2|Y = 0) = 1 + \frac{1}{p} + \frac{2}{p^2}$$

and so

$$\text{Var}(N|Y = 1) = 0, \quad \text{Var}(N|Y = 0) = \frac{1 - p}{p^2}.$$ 

Thus

$$\text{Var}(N) = E(\text{Var}(N|Y)) + \text{Var}(E(N|Y)) = \frac{(1 - p)^2}{p^2} + \frac{p - p^2}{p^2} = \frac{1 - p}{p^2}.$$ 

Of course, in the above calculation, once we know that $E(N^2) = \frac{2 - p}{p^2}$ and $E(N) = \frac{1}{p}$ we know that

$$\text{Var}(N) = \frac{1 - p}{p^2}.$$ 

### 2.4.3 Waiting time until $k$ successes in a row.

We continue with the case of independent trials each of which has probability $p$ of success, and we repeat until there are $k$ successes in a row. Let $N_k$ denote the random variable giving the number of trials necessary to achieve $k$ successes in a row, and let $M_k := E(N_k)$. We find $M_k$ inductively by conditioning on $N_{k-1}$, that is we use (5) so

$$M_k = E(E(N_k|N_{k-1})).$$

5. Show that

$$E(N|N_{k-1}) = N_{k-1} + (1 - p)E(N_k)$$

and so

$$M_k = M_{k-1} + (1 - p)M_k$$

and hence

$$M_k = \frac{1}{p} + \frac{1}{p} \cdot M_{k-1}.$$
Since we know from the geometric distribution that \( M_1 = \frac{1}{p} \) we conclude that
\[
M_k = \frac{1}{p} + \frac{1}{p^2} + \cdots + \frac{1}{p^k}.
\]
For example, if \( p = \frac{1}{2} \) and \( k = 6 \) then \( M_k = 126 \) as claimed at the beginning of this problem set.

To find the expected waiting time until a more complicated pattern, we follow the clever idea of using the Doob stopping time theorem given in the paper “A Martingale approach to the study of occurrence of sequence patterns in repeated experiments” by Shuo-Yen Robert Li The Annals of Probability 8 (1980) 1171 - 1176.

2.5 Filtered probability spaces and martingales.

We generalize the situation of Problem 2. So we define a **filtered space** \((\Omega, \mathcal{F}, \mathcal{F}_n, P)\) to consist of a probability triple \((\Omega, \mathcal{F}, P)\) together with a collection of \(\sigma\)-fields
\[
\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n \subset \cdots \subset \mathcal{F}.
\]
An example is provided by Problem 2. Another way of obtaining examples is to start with a collection \(W_0, W_1, W_2, \ldots\) of random variables, and let
\[
\mathcal{F}_n = \sigma(W_0, \ldots, W_n),
\]
that is the smallest \(\sigma\)-field relative to which \(W_0, \ldots, W_n\) are measurable. In this case, we will frequently write
\[
E(X|W_0, \ldots, W_n)
\]
instead of \(E(X|\mathcal{F}_n)\).

A collection of random variables \(X_n\) is called a (discrete time) **random process**. A random process is said to be **adapted** to the filtration \(\{\mathcal{F}_n\}\) if \(X_n\) is \(\mathcal{F}_n\) measurable.

A random process \(\{X_n\}\) is said to form a **martingale** relative to the filtration \(\{\mathcal{F}_n\}\) if it is adapted, if
\[
E(|X_n|) < \infty
\]
for all \(n\) and
\[
E(X_n|\mathcal{F}_{n-1}) = X_{n-1}.
\]
If you think of \(X_n\) as a gambler’s fortune after the \(n\)th gamble, then this condition states that his conditional expected fortune after the \((n + 1)\)st gamble is equal to his fortune after the \(n\)th gamble no matter what may have previously occurred. So a martingale is a generalized version of a fair game.

If we have a filtration \(\{\mathcal{G}_n\}\) with
\[
\mathcal{G}_n \subset \mathcal{F}_n
\]
for all \( n \), and if each \( X_n \) in a martingale is actually \( G_n \) measurable, then it follows from (1) that it is a martingale relative to the filtration \( G_n \).

So the standard definition is to take \( \mathcal{F}_n = \sigma(X_0, \ldots, X_n) \) and so the condition to be a martingale is

\[
E(X_{n+1}|X_0, \ldots, X_n) = X_n.
\]

(7)

The introduction of the more general filtration is convenient for checking (7). Consider the following example: Let \( Y_0, \ldots, Y_n, \ldots \) be random variables and define

\[
Z_i = Y_i - E(Y_i|Y_0, \ldots, Y_{i-1})
\]

and then

\[
X_n := \sum_{0}^{n} Z_i.
\]

Suppose that \( E(|X_n|) < \infty \) for all \( n \). Let \( \mathcal{F}_n \) be \( \sigma(Y_0, \ldots, Y_n) \), the \( \sigma \) field generated by \( Y_0, \ldots, Y_n \). Then \( X_n \) is \( \mathcal{F}_n \) measurable and

\[
X_{n+1} = X_n + Y_{n+1} - E(Y_{n+1}|\mathcal{F}_n)
\]

so

\[
E(X_{n+1}|\mathcal{F}_n) = E(X_n|\mathcal{F}_n) = X_n
\]

since \( E(E(Y|\mathcal{F}_n)|\mathcal{F}_n) = E(Y_{n+1}|\mathcal{F}_n) \) and \( X_n \) is \( \mathcal{F}_n \) measurable. So the \( X_n \) form a martingale.

An extreme special case of this example is where the \( Y_n \) are independent and have expectation zero so that \( E(Y_i|Y_0, \ldots, Y_{i-1}) = E(Y_i) = 0 \).

3 Stopping times.

Suppose we have a filtered space \((\Omega, \mathcal{F}, \mathcal{F}_n, P)\). A map

\[
\tau : \Omega \rightarrow \{0, 1, 2, \ldots, \infty\}
\]

is called a stopping time if it satisfies the following two conditions

- The set \( \{\omega|\tau(\omega) = n\} \) belongs to \( \mathcal{F}_n \) and
- The probability that \( \tau < \infty \) is one.

The first condition has the following intuitive meaning: I will decide to stop playing the game at time \( n \) based on my knowledge at time \( n \). I may not use information arriving in the future to decide to stop at time \( n \). It is easy to check that the first item is equivalent to the condition that the set \( \{\omega|\tau(\omega) \leq n\} \) belongs to \( \mathcal{F}_n \).

The second condition is technical, and some authors drop it.
If we are given a stopping time \( \tau \), and a process \( \{X_n\} \), we can consider the random variable \( X_\tau \). Explicitly, \( X_\tau \) is the function on \( \Omega \) given by

\[
X_\tau(\omega) := X_\tau(\omega)(\omega).
\]

Since \( X_\tau \) is itself a random variable, i.e. a measurable function on \( \Omega \), we can consider its expectation

\[
E(X_\tau) = \int_{\Omega} X_\tau dP.
\]

This represents the expected fortune of the gambler if he plays according to his strategy of stopping at time \( \tau \).

3.1 The conclusion of Doob’s Stopping Time Theorem.

We can now state the conclusion of the Martingale Stopping Theorem which says that no stopping time strategy (under suitable technical hypotheses called “regularity”) can change the expected outcome of a martingale. In symbols:

\[
E(X_\tau) = E(X_0).
\]

We can see that some condition on the stopping time is needed by looking at the example of random walk on the integers: Let \( B_n \), \( n = 1, 2, \ldots \) be a collection of independent random variables taking on the values 1 and \(-1\) each with probability \( \frac{1}{2} \), and let

\[
X_0 \equiv 0, \ X_1 := B_1, \ X_2 := X_1 + B_2, \ldots, X_{n+1} := X_n + B_{n+1}.
\]

Then

\[
E(X_{n+1}|X_1, \ldots, X_n) = E(X_n|X_1, \ldots, X_n) + E(B_{n+1}|X_1, \ldots, X_n) = X_n
\]

since \( B_{n+1} \) is independent of \( X_1, \ldots, X_n \) its conditional expectation is the same as its ordinary expectation which is zero, and \( E(X_n|X_1, \ldots, X_n) = X_n \). So the \( X_n \), which represent the positions at time \( n \) of a particle undergoing a random walk, form a martingale. Equally well, we can think of this as the fortune (positive or negative) at time \( n \) of a gambler with unlimited credit who starts at zero and bets according these Bernoulli trials.

Suppose the gambler decides to stop as soon as he is one dollar ahead. So

\[
\tau(\omega) = \inf\{n : X_n(\omega) = 1\}.
\]

It is not hard to prove that \( P(\tau < \infty) = 1 \). It is clear that the decision whether or not to stop at \( n \) depends only on the outcomes of the first \( n \) trials. So \( \tau \) is a stopping time. By its very definition,

\[
X_\tau \equiv 1
\]

so

\[
E(X_\tau) = 1.
\]

But \( E(X_0) = 0 \). This fact, that \( E(X_\tau) \neq E(X_0) \), is one way of formulating Bernoulli’s famous “St. Petersburg paradox”. The trouble with this particular \( \tau \) is that \( E(\tau) = \infty \).
3.2 Application to our problem.

I will illustrate how to apply this to our problem of waiting for a pattern. Suppose that a letter L can appear with probability $p$. A fair reward for betting one dollar correctly on the appearance of $L$ is

$$\frac{q}{p}$$

where $q := 1 - p$ since the expected gain on such a bet is

$$p \cdot \frac{q}{p} - q \cdot 1 = 0.$$  

Suppose that there are only the letters A, B, and C with probabilities $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{6}$ respectively. The payoffs for guessing these letters correctly are then 1, 2 and 5.

I want to compute the expected waiting time for the first appearance of ACA. Here is how Ross (page 301) does this problem. Consider the following game from the point of view of the casino: A player arrives on day one and bets one dollar that A will appear. If he wins, he bets his entire fortune, consisting of two dollars, on C on day two. If he loses, he quits. In either event, a second player comes in on day two and bets his entire fortune of one dollar on A. If the first player won on day two, he will have $2 + 5 \cdot 2 = 12$ dollars, which he bets on day three. In the meanwhile, either the second player loses and quits on day two or continues to day three, and a third player comes in to bet on A on day three. If the first player loses on the third day he quits. Also, if he wins on day three he will have $12 + 12 = 24$ dollars, and he takes his winnings and goes home. The casino agrees to play this game until the first appearance of ACA, i.e the first winner. This is its chosen stopping time. Let $X_n$ represent the winnings of the casino on day $n$. It is a martingale with $E(X_n) = 0$. Therefore $E(X_\tau) = 0$ by the Martingale Stopping Theorem. Now the value of $X_\tau$ can be computed as follows: All gamblers betting on days 1, ... $\tau - 3$ will have lost one dollar. The gambler betting on A on day $\tau - 1$ will have lost one dollar, and the gambler betting on A on day $\tau$ will have won one dollar. So

$$X_\tau = \tau - 3 - 23 + 1 - 1 = \tau - 26.$$  

Since $E(X_\tau) = 0$ we conclude that

$$E(\tau) = 26.$$  

On average it will take 26 days for the pattern ACA to occur for the first time.

Let us compute how long it takes for AABBAA to appear when the only outcomes are A with probability $p$ and B with probability $q = 1 - p$. For a correct bet on A of a dollar, the gambler wins $\frac{q}{p}$ dollars and has a fortune of $1 + \frac{q}{p} = \frac{1}{p}$ dollars. So the winner who started at day $\tau - 5$ has $p^{-4}q^{-2}$ dollars. The casino will have gained $\tau - 6$ dollars from the players betting before time $\tau - 5$, and will have lost $p^{-4}q^{-2} - 1$ dollars to the winner who started on day $\tau - 5$,
will have gained one dollar each from the players starting on days \( \tau - 4, \tau - 3 \) and \( \tau - 2 \), will have lost \( p^{-2} - 1 \) dollars to the player starting on day \( \tau - 1 \) and \( p^{-1} - 1 \) dollars to the player who entered on day \( \tau \). So

\[
X_\tau = \tau - 6 + 6 - p^{-4}q^{-2} - p^{-2} - p^{-1}.
\]

Therefore

\[
E(\tau) = p^{-4}q^{-2} + p^{-2} + p^{-1}.
\]

If \( p = q = \frac{1}{2} \) this is 64 + 4 + 2 = 70 as claimed at the beginning of this problem set.

If we are waiting for the pattern AAAAAA then the same computation yields

\[
p^{-6} + p^{-5} + p^{-4} + p^{-3} + p^{-2} + p^{-1} = p^{-1} \cdot \frac{1 - p^{-6}}{1 - p^{-1}},
\]

as we have already proved.

6. Monkeys type one of the 26 capital letters every minute, each with the same probability \( \frac{1}{26} \). On average, how long will it take a monkey to type until "ABRACADABRA" appears?

We will now work our way toward a formulation and proof of Doob’s theorem.

3.3 The stopped process.

Let us call \( \tau \) a random time if we drop the condition \( P(\tau < \infty) = 1 \) in the definition of stopping time, but retain the condition that the event

\[
\{ \tau = n \}
\]

is determined by the random variables \( X_1, \ldots, X_n \). Suppose that the \( X_n \) form a martingale, and define the stopped process as

\[
X_{\tau \wedge n}.
\]

In more detail: the value of \( Y_n = X_{\tau \wedge n} \) at a point \( \omega \) is

\[
Y_n(\omega) = \begin{cases} 
  X_n(\omega) & \text{if } n \leq \tau(\omega) \\
  X_{\tau(\omega)}(\omega) & \text{if } n > \tau(\omega)
\end{cases}.
\]

Proposition 1 The stopped process is also a martingale and \( E(X_{\tau \wedge n}) = E(X_0) \).

Proof. [Ross page 298.] Let the random variables \( I_n \) be defined by

\[
I_n(\omega) = \begin{cases} 
  1 & \text{if } \tau(\omega) \geq n \\
  0 & \text{if } \tau(\omega) < n
\end{cases}.
\]
So $I_n = 1$ if we haven’t yet stopped after observing $X_1, \ldots, X_{n-1}$ and is zero otherwise. We claim that if we set $Y_n = X_{\tau \wedge n}$ then

$$Y_n = Y_{n-1} + I_n(X_n - X_{n-1}).$$

Indeed consider separately the two possibilities $\tau \geq n$ and $\tau < n$: If at $\omega$, $\tau \geq n$ then $Y_n = X_n$, $Y_{n-1} = X_{n-1}$, and $I_n = 1$ so the equation is true. If $\tau(\omega) < n$ then at $\omega$ we have $Y_n = Y_{n-1} = X_{\tau}$ and $I_n = 0$. The equation is true in both cases.

Taking conditional expectations gives

$$E(Y_n|X_1, \ldots, X_{n-1}) = E(Y_{n-1}|X_1, \ldots, X_{n-1}) + E(I_n(X_n - X_{n-1})|X_1, \ldots, X_{n-1}).$$

Since $Y_{n-1}$ depends only on $X_1, \ldots, X_{n-1}$ we have $E(Y_{n-1}|X_1, \ldots, X_{n-1}) = Y_{n-1}$. As to the second term in the above displayed equation, since $I_n$ depends only on $X_1, \ldots, X_{n-1}$ we can pull it out of the conditional expectation sign by (3). fact. So

$$E(I_n(X_n - X_{n-1})|X_1, \ldots, X_{n-1}) = I_n E(X_n - X_{n-1})|X_1, \ldots, X_{n-1}) = 0$$

since the $X_n$ form a martingale. Thus

$$E(Y_n|X_1, \ldots, X_{n-1}) = Y_{n-1}.$$

But the $\sigma$-field determined by the $X_1, \ldots, X_{n-1}$ contains the $\sigma$-field generated by the $Y_1, \ldots, Y_{n-1}$ so if $E(Y_n|X_1, \ldots, X_{n-1}) = Y_{n-1}$ then

$$E(Y_n|Y_1, \ldots, Y_{n-1}) = Y_{n-1}$$

proving that the $Y_n$ form a martingale. Since $Y_0 = X_0$ we have

$$E(X_{\tau \wedge n}) = E(X_0)$$

for all $n$, which was the last assertion of the proposition. QED

### 3.4 Doob’s Stopping Time Theorem.

Suppose we let $n \to \infty$ in $X_n \wedge \tau$. If $\omega$ is a point such that $\tau(\omega) < \infty$ then

$$\lim_{n \to \infty} X_{n \wedge \tau}(\omega) = X_\tau(\omega).$$

In fact if $n > \tau(\omega)$ then $X_{\tau \wedge n}(\omega) = X_\tau(\omega)$. So the condition that $\tau$ be a stopping time asserts that the above limit holds almost everywhere. So the question of whether (9) implies (8) is reduced to a familiar type of problem in measure theory: can we pass to the limit under the integral sign?

Doob’s theorem asserts that any one of the following three conditions is enough to conclude that (8) holds:

1. $\tau$ is bounded (i.e. there is an $N$ such that $\tau(\omega) \leq N$ for all $\omega$,
2. There is a constant $K$ such that $|Y_n(\omega)| < K$ for all $\omega$.

3. $E(\tau) < \infty$ and there is a constant $M$ such that

$$E(|X_{n+1} - X_n|, X_0, \ldots, X_n) < M.$$ 

If condition 1) holds, then we have eventual equality in (10) so there is nothing to prove.

7. Cite the relevant theorem(s) in integration theory to verify that conditions 2) and 3) are enough to guarantee passing to the limit to obtain (8).

8. Show that condition 3) is satisfied in our waiting for a pattern example. [Hint: Use problem 1 to get a crude estimate on $E(\tau)$.]