Overview

- Experimental methodology
- Probably approximately correct learning
- Mistake bounds
- Vapnik-Chervonenkis dimension

Experimental methodology

- How do we measure performance of a learning algorithm?
- We need to measure on test data
- Need to perform experiment multiple times

Best possible method

- Divide data into many partitions
- Each partition has training and test sets
- Train on training data, test on test set
- Compute average performance on partitions
Problem

- Requires lots of data!
- Only train on small fraction of data

Cross validation

- Divide data into M folds
- Run M experiments
- Each experiment: use M-1 folds for training, remaining fold for testing
- Use different fold as test set each time
- Compute average performance over experiments

5-fold cross-validation

<table>
<thead>
<tr>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Test</td>
</tr>
</tbody>
</table>

Cross-validation, validation set

- Different use of “validation”
- Suppose you want to measure the performance of decision trees with validation set pruning
- You can use cross-validation
- Validation set needs to be separate from both training and test sets!
5-fold cross-validation

<table>
<thead>
<tr>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
<th>Training</th>
</tr>
</thead>
</table>

Overview
- Experimental methodology
- Probably approximately correct learning
- Mistake bounds
- Vapnik-Chervonenkis dimension

Why study learning theory
- Provide performance guarantees
- Determine how many samples we need
- Develop new algorithms

Inductive bias
- With inductive bias, possibility of learning
- How much learning is possible with a particular inductive bias?
- What does “how much learning” mean?

PAC learning
- PAC: probably approximately correct
- With high probability, learner will generate good hypothesis

Approximately correct
- Unreasonable to expect to learn perfectly correct hypothesis
 - more than one consistent hypothesis
 - can’t guarantee we will choose the right one
- **Approximately** correct = learns good hypothesis
 - “good” = error < ε
Probably approximately correct

- Unreasonable to expect good hypothesis for every training set
 - training set may be unlucky
- **Probably** approximately correct = good on most training sets
 - "most" = probability > 1-δ

Assumptions

- Distribution P over instances \(\langle X, C \rangle \)
- Distribution is stationary
 - doesn’t change over time
 - same for future instances as training instances
- Instances are independent samples from P
- i.i.d: “independently identically distributed”

Definitions of error

- \(\text{error}_D(h) \) =
 - error of h on training set
 - fraction of training set misclassified by h
- \(\text{error}_P(h) \) =
 - error of h on future instances
 - probability h will misclassify an instance \(\langle x, c \rangle \) \~ P
 - \(P(h(x) \neq c) \)

Probably approximately correct

- Learner L produces hypothesis based on data \(D \)
- \(P(\text{error}_P(L(D)) < \epsilon) > 1 - \delta \)
- \(P(\text{error}_P(L(D)) < \epsilon) \) is taken under probability distribution over training sets

Definition: PAC-learnability

- \(n \) = number of attributes, \(H \) = hypothesis space
- \(H \) is PAC-learnable if
 - there exists a learning algorithm L such that
 - for every deterministic domain whose true model \(f \in H \)
 - for every distribution P over instances
 - for \(0 < \epsilon < 0.5 \) and \(0 < \delta < 0.5 \)
 - L will, with probability > 1-δ, output a hypothesis \(h \in H \) such that \(\text{error}(h) < \epsilon \)
 - in time polynomial in \(1/\epsilon, 1/\delta, n \)

Polynomial time

- This requires
 - Polynomial number of training instances
 - Polynomial run time given a training set
- Neither implies the other
- Required number of training instances is usually the limiting factor
- How many instances are required?
Definition: sample complexity

- Number of training instances \(N \) required to guarantee that
 - for every distribution \(P \) over instances
 - for every true model \(f \in H \)
 - with probability \(\geq 1-\delta \), every hypothesis \(h \in H \) consistent with training set of size \(N \) has \(\text{error}_P(h) \leq \varepsilon \)

Sample complexity

- What is a bad hypothesis?
 - \(\text{error}_P(h) > \varepsilon \)
- Given one training instance \(x \), what is probability that bad hypothesis is consistent with it?
 - \(P(\text{bad hyp. consistent with one instance}) \leq 1-\varepsilon \)
- Given \(N \) training instances, what is probability that bad hypothesis is consistent with all of them?
 - \(P(\text{bad hyp. consistent with } N \text{ instances}) \leq (1-\varepsilon)^N \)
 - (assuming instances are independent)

Sample complexity

- \(P(\text{bad hyp. consistent with one instance}) \leq 1-\varepsilon \)
- \(P(\text{bad hyp. consistent with } N \text{ instances}) \leq (1-\varepsilon)^N \)

- What is probability that there is any bad hypothesis consistent with \(N \) training instances?

Union bound

\[
P(A_1 \lor A_2 \lor \ldots \lor A_n) \leq P(A_1) + P(A_2) + \ldots + P(A_n)
\]

\[
P(\text{any bad hyp. consistent with } N \text{ instances}) \leq P(\text{bad hyp. 1 consistent with instances}) + P(\text{bad hyp. 2 consistent with instances}) + \ldots + P(\text{bad hyp. } h_n \text{ consistent with instances})
\]

\[
\leq (\# \text{ bad hyp.})^* (1-\varepsilon)^N
\]

Number of bad hypotheses

- Upper bound on number of bad hypotheses?
 - \(|H| \)
- \(P(\text{any bad hyp. consistent with } N \text{ instances}) \leq |H|(1-\varepsilon)^N \)

- Upper bound
 - may be quite weak

Back to sample complexity

- \(P(\text{any bad hyp. consistent with } N \text{ instances}) \leq |H|(1-\varepsilon)^N \)
- How many instances are required to guarantee that this probability is \(< \delta \)?
 - \(|H|(1-\varepsilon)^N < \delta \)
 - ...
 - \(N > \frac{1}{\varepsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right) \)
Definition: PAC-learnability

• $n =$ number of attributes, $H =$ hypothesis space
• H is PAC-learnable if
- there exists a learning algorithm L such that
 • for every deterministic domain whose true model $f \in H$
 • for every distribution P over instances
 • for $0 < \varepsilon < 0.5$ and $0 < \delta < 0.5$
- L will, with probability $> 1 - \delta$, output a hypothesis $h \in H$ such that $\text{error}_P(h) < \varepsilon$
 - in time polynomial in $1/\varepsilon$, $1/\delta$, n

Conclusion

• $N > \frac{1}{\varepsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right)$
• Upper bound on sample complexity
 - smaller N might suffice
• Always polynomial in $1/\varepsilon$ and $1/\delta$
• Polynomial in n?
 - depends on H

Example: conjunctive concepts

• Literal: attribute or its negation
 - e.g. $X_1, \neg X_2$
• Conjunctive formula: conjunctions of literals
 - e.g. $\neg X_3 \land X_2$
• Let H be set of conjunctive formulas

Sample complexity

• How big is $|H|$ for n attributes?
 - each attribute appears positively, negatively, not at all
 - 3^n
• Sample complexity: $N > \frac{1}{\varepsilon} \left(n \ln 3 + \ln \frac{1}{\delta} \right)$
 - polynomial sample complexity
 - conjunctive formulae are PAC-learnable

Example: Boolean formulae

• Any formula from n attributes to a Boolean class
• How big is $|H|$?
 - a truth table has 2^n rows
 - each row can have one of two classes (T/F)
 - So 2^{2^n} possible hypotheses
• Sample complexity: $N > \frac{1}{\varepsilon} \left(2^n \ln 2 + \ln \frac{1}{\delta} \right)$

PAC-learnability

• $N > \frac{1}{\varepsilon} \left(2^n \ln 2 + \ln \frac{1}{\delta} \right)$
• Looks like Boolean formulae have exponential sample complexity
• Not a proof: upper bound
• In fact, they do have exponential sample complexity
 - not surprising: no inductive bias
Example: k-term DNF

- Disjunction of k conjunctive formulae
 \[c_1 \lor c_2 \lor \ldots \lor c_k \]
- where \(c_i \) is conjunctive formula of \(n \) attributes
- Size of \(|H| \)?
 - each conjunction has \(3^n \)
 - k conjunctions: \((3^n)^k = 3^{nk} \)

Sample complexity: k-term DNF

- \(|H| = 3^{nk} \)
- Sample complexity: \(N > \frac{1}{\epsilon} \left(nk \ln 3 + \frac{1}{\delta} \right) \)
- Polynomial sample complexity
- But no polynomial algorithm (unless RP=NP)
- Not PAC-learnable

Conjecture

If a hypothesis space is PAC-learnable, so is any subset of that space

Example: k-CNF

- Arbitrary length conjunction of disjunctive terms
 \[d_1 \land d_2 \land \ldots \land d_j \]
- where \(d_i \) is disjunction of \(k \) attributes
- Fact: k-term DNF \(\subset \) k-CNF
 - k-term DNF formula can be rewritten as k-CNF
- But k-CNF is PAC-learnable
 - polynomial computation complexity per instance

A true statement

If a hypothesis space is PAC-learnable, so is any subset of that space

If a hypothesis space has polynomial sample complexity, so does any subset of that hypothesis space.

Assumption

- So far, we assumed that the true concept was in out hypothesis space
- What if it is not?
- Two possibilities:
 - there exists a hypothesis consistent with training set
 - all hypotheses have some error on training set
First case: consistent learner

Consistent learner either
- produces hypothesis consistent with training set if one exists
- reports failure

First case: example

- $H = \text{conjunctive formulae}$
- True concept: $X_2 \lor X_3$

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
</tr>
</tbody>
</table>

Hypothesis X_2 is consistent with training set

Consistent learner: guarantee

- L is consistent learner with hypothesis space H
- If N training examples are sufficient that with high probability, no bad hypotheses in H will be consistent with the training data...
- Then a hypothesis returned by L is probably approximately correct
 - even if not consistent with true concept

Second case: agnostic learner

- Returns hypothesis with minimum error on training set
- Agnostic because no assumption that true concept contained in hypothesis space

Reminder: definitions of error

- $\text{error}_D(h) =$ error of h on training set
- $\text{error}_P(h) =$ error of h on future instances

If we know $\text{error}_D(h)$, can we say something about $\text{error}_P(h)$?
Hoeffding bound

\[P(\text{error}_D(h) > \text{error}_p(h) - \varepsilon) \leq e^{-2N\varepsilon^2} \]

Union bound

\[P(\text{error}_D(h) > \text{error}_p(h) - \varepsilon) \leq e^{-2N\varepsilon^2} \]
\[P(\exists h \in H : \text{error}_D(h) > \text{error}_p(h) - \varepsilon) \leq |H|e^{-2N\varepsilon^2} \]

Minimum-error hypothesis

\[P(\text{error}_D(h) > \text{error}_p(h) - \varepsilon) \leq e^{-2N\varepsilon^2} \]
\[P(\exists h \in H : \text{error}_D(h) > \text{error}_p(h) - \varepsilon) \leq |H|e^{-2N\varepsilon^2} \]
\[P(\text{error}_D(h^*) > \text{error}_p(h^*) - \varepsilon) \leq |H|e^{-2N\varepsilon^2} \]
where h* is the hypothesis returned by L

Agnostic learner: guarantee

- Bound probability by \(\delta \), do some algebra...
- If \(N > \frac{1}{2\varepsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right) \)
- Then with probability 1-\(\delta \), error on future instances is less than \(\varepsilon \) greater than error on training set
- Assumes same distribution for training and test sets

What’s wrong with this statement?

I have tried several learning algorithms on my data, and algorithm A has the best performance on the test set. The hypothesis space for algorithm A has sample complexity N, and I have more than N training instances. Therefore, I expect that its performance on real-world data will, with high probability, be close to its performance on the test set.

The design process

- Try multiple algorithms, say A and B
- Choose one with best performance on test set
- Any hypothesis in \(H_A \) or \(H_B \) could be returned
- Effective H is \(H_A \cup H_B \)
Meta learning algorithm

- Learning algorithm design process is a more powerful learning algorithm
- Test set is functioning like validation set
- Hypothesis class is larger than individual hypothesis classes
- Sample complexity is larger

Overview

- Experimental methodology
- Probably approximately correct learning
- Mistake bounds
- Vapnik-Chervonenkis dimension

Mistake bound

- Online learner
 - receives instance \(x \)
 - predicts class for \(x \)
 - provided with correct class, updates hypothesis
- How many mistakes will learner make before converging to correct concept?

Example: conjunctive formulae

FindS(D,X) =
 Initialize h to \(X_1 \land \neg X_1 \land X_2 \land \neg X_2 \land \ldots \land X_n \land \neg X_n \)
 For each positive training instances \(x \in D \)
 Remove from h any literal not satisfied by \(x \)
 Output h

Example: conjunctive formulae

\[h = X_1 \land \neg X_1 \land X_2 \land \neg X_2 \land X_3 \land \neg X_3 \land X_4 \land \neg X_4 \]

Training data:

<table>
<thead>
<tr>
<th>Example</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

After example 1:

\[h = X_1 \land X_2 \land \neg X_3 \land X_4 \]
Example: conjunctive formulae

\[h = X_1 \land X_2 \land \neg X_3 \land X_4 \]

Training data:

<table>
<thead>
<tr>
<th>Example</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

After example 2:
\[h = X_1 \land X_2 \land X_4 \]

Example: conjunctive formulae

\[h = X_1 \land X_2 \land \neg X_3 \land X_4 \]

Training data:

<table>
<thead>
<tr>
<th>Example</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

Skip example 3 (negative example)
\[h = X_1 \land X_2 \land X_4 \]

Example: conjunctive formulae

\[h = X_1 \land X_2 \land \neg X_3 \land X_4 \]

Training data:

<table>
<thead>
<tr>
<th>Example</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

After example 4 (final hypothesis):
\[h = X_1 \land X_2 \]

Mistake bound

- Assume consistent domain
- Assume true concept is in hypothesis class
- How many mistakes will FindS make before it converges on true concept?

Example: halving algorithms

- Start with set of hypotheses \(H \)
- For each instance, remove inconsistent hypotheses from \(H \)
- To classify instance, majority vote
 - majority say positive, classify positive, else negative
- What is mistake bound of halving algorithms?

FindS mistake bound

- Will algorithm ever misclassify negative instances as positive?
 - no: hypothesis is most specific
- Initial hypothesis has \(2n \) terms (T/F for each attribute)
- First instance (always misclassified): how many terms are removed from hypothesis?
 - \(n \)
- For subsequent mistakes, how many terms are removed?
 - at least 1
- After first mistake, only \(n \) terms, so only \(n \) more mistakes before hypothesis is empty: mistake bound = \(n+1 \)
Halving algorithm mistake bound

- If instance x is misclassified, how many hypotheses in H are inconsistent with x?
 - at least $|H|/2+1$
- So at most $|H|/2$ hypotheses remain
- After $\log_2(|H|)$ mistakes, only one hypothesis can remain

Overview

- Experimental methodology
- Probably approximately correct learning
- Mistake bounds
- Vapnik-Chervonenkis dimension

Terminology

- A **dichotomy** on S is a partition of S into positive and negative instances
 - For $|S|=n$, 2^n dichotomies
- Every hypothesis represents a dichotomy
- Hypothesis space H **captures** a dichotomy d if there exists $h \in H$ such that h represents d
- Hypothesis space H **shatters** set S if it captures every dichotomy in S.

VC dimension

The **VC dimension** of a hypothesis space H is the size of the largest set shattered by H, if finite, otherwise it is ∞.

Example: number line

- $X = $ real numbers on the line
- $H = $ closed intervals

What is the VC dimension of H?

Can H shatter two points?

Yes

![Diagram of number line with closed intervals and points]
Can H shatter three points?

No

+ - +

Therefore, VC(H) = 2

Example: plane

- X = the x,y-plane
- H = linearly separable hypotheses in the plane
- What is the VC dimension of H?

Can H shatter two points?

Yes: same argument as before

Can H shatter three points?

Yes

Sometimes yes, sometimes no

What does this say about VC(H)?

Sometimes yes, sometimes no

Definition

The VC dimension of a hypothesis space H is the size of the largest set shattered by H, if finite, otherwise it is ∞.

Therefore, VC(H) is at least 3...

Can H shatter four points?

No

+ - +

This cover all cases

Therefore VC(H) = 3
In general

• \(X = \text{point in } n \text{ dimensions}\)
• \(H = \text{linear separators}\)
• \(\text{VC}(H) = n+1\)

Example: Boolean conjunctions

• \(X = \text{conjunctions of three literals}\)
• \(H = \text{conjunctions of up to three literals}\)
• What is the VC dimension of \(H\)?

Construct dichotomy

• Consider three instances

<table>
<thead>
<tr>
<th>#</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

• For any set of class labels, construct dichotomy:
 - to exclude instance \(i\), add \(\neg X_i\) to hypothesis
• Argument can be applied to \(n\) literals

Boolean conjunctions

• Construction argument says that \(\text{VC}(H)\) is at least \(n\) (for \(n\) literals)
• Harder to show exactly \(n\): most prove that \(n+1\) instances can't be shattered

In general

• Can we bound \(\text{VC}(H)\) based on \(|H|\)?
• Suppose \(\text{VC}(H) = d\)
• How many hypotheses are required to shatter \(d\) instances?
 - \(2^d\)
• So \(\text{VC}(H) \leq \log_2|H|\)

VC dimension and sample complexity

• Before we bounded sample complexity using the size of the entire hypothesis space:
 \[
 N > \frac{1}{\varepsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right)
 \]
• We can use VC dimension as a measure of the complexity of \(H\) instead
 \[
 N > \frac{1}{\varepsilon} \left(4 \log_2 \frac{2}{\delta} + 8 \text{VC}(H) \log_2 \frac{13}{\varepsilon} \right)
 \]
Sample complexity lower bound

- Upper bound: how many samples are *sufficient* for successful learning
- With VC dimension, we can bound the number of samples *necessary* for successful learning:

\[N < \max \left[\frac{1}{\varepsilon} \log \frac{1}{\delta}, \frac{\text{VC}(F) - 1}{32\varepsilon} \right] \]

- VC(F) is VC dimension of concept class